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For many years [n]helicenes, nonpla-
nar ortho-fused aromatic compounds
that exhibit helical chirality, were re-

garded as little more
than an academic cu-
riosity.[1] More re-
cently, helicene
chemistry has grown
from the stage of a
descriptive field of
aesthetic and curious

molecules to an important field of
research owing to the extraordinary
optical and electronic properties of
these compounds,[2] closely associated
to their inherent chirality. Though use-
ful, the classical synthesis of helicenes
based on the oxidative photocyclization
of stilbene-type precursors[3] has been
hampered by fundamental drawbacks
from evolving into a really convenient
method for preparing these molecules.
This has led to the development of
several new methodologies during the
last decade which provide useful alter-
natives for the synthesis of this type of
helical skeleton. Among them, the pio-
neering work of Katz and Liu[4] led to
the production of racemic helicene bis-
quinones through a Diels–Alder ap-
proach (Scheme 1),[5] supplemented by
an efficient procedure for effecting the
required resolutions.[6] Despite remark-
able progress in helicene chemistry, the
task of developing new, short, and
efficient strategies to racemic and enan-

tiopure helicenes which
fulfill criteria of atom
economy remains a chal-
lenge.

For example, the first
nonphotochemical prepa-
ration of [7]helicene,
which was the first carbo-
helicene to be synthesized
by dehydrophotocycliza-
tion,[7] was not described
until 1999 when Gingras
and Dubois[8] reported a
five-step approach using a
“carbenoid coupling”
strategy (Scheme 2). Bi-
phenanthrol 1, obtained
by oxidative Cu-promoted
coupling of 3-phenanthrol,
was treated with triflic an-
hydride followed by addi-
tion of MeMgBr in the
presence of a nickel cata-
lyst to afford derivative 2
in 62% yield. After bro-
mination of 2 and “carbe-
noid coupling” of dibro-
mide 3 with excess
LiHMDS, [7]helicene was
obtained in 75% yield.

A related strategy was
presented in 2000 by Rajca
and co-workers[9] for the
synthesis of a novel oligo-
thiophene 4 (Scheme 3), in
which the thiophene rings
are cross-conjugated and
annelated into a helix. The
synthetic route consisted
of two iterations using
3,4-dibromothiophene
and compound 6 as the
functionalized starting
modules. In each iteration,

Scheme 3. Iterative (“connection”–“annelation”) synthesis
of racemic carbon–sulfur helicene 4. TMS= trimethylsilyl,
LDA= lithium diisopropylamide.

Scheme 2. First nonphotochemical synthesis of [7]helicene
by a “carbenoid coupling” strategy. dppp=1,3-bis(diphenyl-
phosphanyl)propane, NBS=N-bromosuccinimide,
LiHMDS= lithium hexamethyldisilazide,
HMPA=hexamethyl phosphoramide.

Scheme 1. Simple nonphotochemical route to helicene qui-
nones by Katz and Liu.
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the modules were connected by
means of a single Li/Br exchange
followed by oxidative coupling
with CuCl2, and then “annelat-
ed” through the LDA-mediated
dilithiation of the unprotected
a positions of the thiophene rings
in 5 and 7 and further reaction
with bis(phenylsulfonyl)sulfide.

A new route to [5]helicenes,
based on a tin-mediated, nonre-
ducing tandem radical cyclization
of (Z,Z)-1,4-bis(2-iodostyryl)-
benzene derivatives was recently
described by Harrowven et al.[10]

The bisphosphonium salt 8 (Scheme 4),
obtained from the corresponding dibro-
mide, was subjected to a Wittig reaction
with o-iodobenzaldehyde to give com-
pound (Z,Z)-9, together with the E,Z
isomer. After separation and treatment
of 9 with tributyltin hydride under

standard radical-forming conditions,
[5]helicene was obtained in 58% yield.
This short and easy protocol provided
different substituted [5]helicenes with
yields ranging from 35 to 58%.

An important breakthrough in the
field was reported in 2002 by Star@,
Starý, and co-workers,[11] in an innova-
tive approach to helicenes that exploited
atom-economic isomerization of aro-
matic cis,cis dienetryines under transi-
tion-metal catalysis (Scheme 5). Thus,
the nickel(0)-catalyzed [2+2+2] cyclo-
isomerization of derivative 10 afforded
substituted [6]helicene 11 in 61% yield,
after formation of three new cycles in

one step under very mild conditions. The
scope of this efficient procedure was
clearly demonstrated with the synthesis
of different substituted [5], [6], and
[7]helicenes with yields ranging from
60 to 83%.

An impressive demonstration of the
ability of transition-metal catalysis to
build up helical frameworks is the re-
cently described total synthesis of angu-
lar [n]phenylenes, comprised of n alter-
nating benzene units fused with n�1
cyclobutadiene rings, the first helical
phenylenes, called heliphenes by the
authors Vollhardt et al.[12] A first ap-
proach to [7]heliphene (Scheme 6) was
effected by a cobalt-catalyzed double
cycloisomerization of hexayne inter-
mediate 12 in 8% yield through the
one-step formation of six new cycles.[12a]

In an even more convergent approach,
the nonayne precursor 13 was submitted

to an unprecedented cobalt-catalyzed
triple cycloisomerization protocol to
afford [7]heliphene in only 2% yield,
but forming nine rings in one step,
including all six of the component cyclo-
butadienes.[12b] Such methodology
proved to be suitable for the preparation
of [6], [7], [8], and [9]heliphenes. Sur-
prisingly, none of these helical mole-
cules could be resolved into their enan-
tiomers, showing much lower barriers to
racemization than those of the corre-
sponding helicenes.[13]

A new palladium-catalyzed cyclotri-
merization of arynes developed by Gui-
ti@n and co-workers was very recently
applied to the synthesis of 16 in 26%
yield (Scheme 7), the first double heli-

cene formed by a pentahelicene
and a heptahelicene with two
rings in common.[14]

Another major challenge in
the chemistry of helicenes is the
efficient preparation of the indi-
vidual enantiomers with high
enantioselectivity. Most of the
asymmetric approaches reported
to date were based on the reso-
lutions of the racemic derivatives.
Although several enantio- or di-
astereoselective syntheses have
been described, only moderate
asymmetric inductions have been
achieved, except in a few cases.
To extend the range of applica-
tions of functionalized helicenes,
there is still a need for general,
efficient, and versatile enantiose-

Scheme 4. [5]Helicene by tandem radical cycli-
zation of (Z,Z)-1,4-bis(2-iodostyryl)benzene
(9). AIBN=azobisisobutyronitrile.

Scheme 5. Nickel(0)-catalyzed [2+2+2] cycloisomeriza-
tion of aromatic cis,cis-dienetryine 10. cod=cycloocta-
1,5-diene.

Scheme 6. Cobalt-catalyzed double and triple cycloiso-
merizations of aromatic hexayne 12 and nonayne 13.

Scheme 7. Palladium-catalyzed cyclotrimeriza-
tion of aryne 15. dba=dibenzylideneacetone.
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lective approaches to both M and P
helimers.

In this context, CarreCo et al. descri-
bed the first enantioselective synthesis
of 7,8-dihydro[5]helicene quinones and
bisquinones based on a three-step one-
pot domino process (Scheme 8).[15] Thus,
the reaction of vinyl 3,4-dihydrophenan-

threne 17 (R=TBDMS) with 2 equiv-
alents of enantiopure (SS)-2-(p-tolylsul-
finyl)-1,4-benzoquinone (18) led, under
very mild conditions, to 7,8-dihydro[5]-
helicene quinone (P)-19 in 75% yield,
through a domino process comprising a
Diels–Alder reaction and the elimina-
tion of the sulfoxide, followed by aro-
matization of the B ring of inter-
mediate 20 (R=TBDMS) effect-
ed by excess quinone. Helicene 19
was obtained in optically pure
form ([a]20D =++ 3700 (c= 0.015,
CHCl3)) with the absolute config-
uration P.

The versatility of this method-
ology was probed, after isolation
of the cycloaddition/sulfoxide-
elimination product (R)-20 (R=

Me, TBDMS), with the enantio-
divergent synthesis of either P or
M helimers from such common
intermediates by simply selecting
the aromatizing reagent.[16] The
aromatization of the B ring of 20
(R=TBDMS) with DDQ gave
helicene (P)-19 in 67% yield with

96% ee, whereas helicene (M)-21 was
obtained in 88% yield with 90% ee
([a]20D =�3030 (c= 0.003, CHCl3)) when
the aromatization of 20 (R=Me) was
effected with CAN.

In another asymmetric approach to
helical conjugated molecules, Karikomi
and co-workers developed a practical

method for the synthesis of chiral
[5]helicenes using an aromatic
oxy-Cope rearrangement strategy
(Scheme 9).[17] The chiral bicy-
clo[2.2.2]ketone (1R,4S)-22, ob-
tained by enzymatic resolution,
reacted with the Grignard reagent
23 to give (1R,2S,4S)-24 as the
major product. Aromatic oxy-
Cope rearrangement afforded
pentacyclic fused-ring derivative
(4aS,14dR)-25 in 47% yield.
[5]Helicene (P)-26 was obtained
from 25 in 24% yield and in
enantiomerically pure form
([a]20D =++ 1243 (c= 0.015,
CHCl3)) in four steps (reduction,
hydrolysis and dehydration, enol-
acetylation, and aromatization).
The same procedure was followed
to synthesize the enantiomer (M)-
26 from (1S,4R)-22.

In summary, these recent pro-
tocols constitute a significant ad-
vancement of synthetic method-

ology that allows straightforward access
to helicene-like molecules. The develop-
ment of efficient asymmetric ap-
proaches should lead to further applica-
tions of chiral nonracemic helicenes,
both in asymmetric synthesis and catal-
ysis and in materials science.
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